二维码
萨马伯南

扫一扫关注

当前位置: 首页 » 新闻资讯 » 工程百科 » 正文

非调质钢曲轴的开发和应用

放大字体  缩小字体 发布日期:2024-11-27 04:15:10    来源:本站    作者:admin    浏览次数:101    评论:0
导读

  1 前言  曲轴是在不断周期变化的载荷下,在往复和旋转惯性力和力矩(扭矩和弯矩)共同作用下做功的;其次曲轴各轴颈在很高

  1 前言

  曲轴是在不断周期变化的载荷下,在往复和旋转惯性力和力矩(扭矩和弯矩)共同作用下做功的;其次曲轴各轴颈在很高的比压下,以很大的相对速度与轴承发生滑动摩擦,产生较高的温度和磨损,服役条件十分恶劣。因此,曲轴材料必须有较高的抗拉强度、疲劳强度、较高的硬度及耐磨性,心部有一定的韧性。据有关资料统计,曲轴失效形式主要是弯曲疲劳断裂和轴颈磨损。

  我公司柴油机制造设备是根据引进技术的加工工艺要求而配置的,按要求采用S53C(调质钢)锻造曲轴毛坯,组织试生产。但国内锻造曲轴毛坯因调质处理质量不稳定,硬度均匀性差,切削性能差,导致加工刀具寿命短,生产效率低,经常停产,造成生产成本高,生产压力大的被动局面。为此,通过调研,我们决定用非调质钢制造曲轴。

  S53C钢调质状态下与正火状态下的力学性能指标如表1所示。

  表1 S53C钢力学性能及曲轴表面硬度数据表

  热处理状态 σs/MPa σb/MPa δ(%) Ψ(%) αKU/-2 HBS 表面氮碳共渗HV0.1

  调质

  正火 ≥588

  ≥392 ≥780

  ≥647 ≥14

  ≥15 ≥35 ≥59 229~285

  183~255 ≥500

  ≥500

  我们的主要任务是选择一种非调质钢制造柴油机曲轴,既要满足S53C钢主要力学性能指标(特别是抗拉强度、疲劳强度),又能大大地改善其切削性能,提高生产效率,降低生产成本。依据我国非调质钢冶炼水平和现有非调质钢,我们选定49MnVS3钢为研究对象。用49MnVS3钢与S53C钢进行了对比性试验。只要49MnVS3钢的锻造成形性、加工切削性能、疲劳台架试验、装车路试使用性能达到或超过S53C钢的性能,我们就认为能够替代调质钢制造柴油机曲轴。

  2 对比试验及分析

  2.1 锻造成形工艺试验

  非调质钢曲轴的锻造成形,主要是控制锻件的加热温度,始、终锻温度和控冷速度,有效地保证曲轴锻件的综合力学性能及曲轴的加工性能和使用寿命。

  曲轴锻造工艺流程如下:

  下料→中频加热→预锻→终锻→切边→热校→控冷→喷丸→检测(硬度、力学性能、探伤等)→机加工。

  依据曲轴毛坯厂生产经验和生产实际,以及两种钢的热加工参数,我们制定了两种钢的对比锻造工艺,如表2所示。

  表2 曲轴锻造工艺对比试验参数表

  材质 加热温度/℃ 始锻温度/℃ 终锻温度/℃ 控冷方式 锻造方式 锻后处理设备

  S53C钢

  49MnVS3钢 1200±10

  1190±10 1150±20

  1150±20 1050±30

  1030±30 锻后调质

  风→控冷 模锻

  模锻 调质专用线

  控冷专用线

  2.2 切削性能试验及氮碳共渗处理

  用S53C钢和49MnVS3钢的曲轴毛坯,在曲轴加工线上进行了对比切削性能试验。主要考核其刀具的使用寿命及切削力的大小。其数据见表3。

  表3 两种材质曲轴切削刀具寿命比较

  工序名称 加工调质钢刀具

  寿命 件/套 加工非调质钢

  刀具寿命 件/套 提高刀具

  寿命(%)

  车大、小头

  车端面

  车-拉轴颈

  钻油孔

  钻飞轮孔 4000

  3800

  2000

  1000

  1500 7200

  7000

  5000

  1800

  2000 80

  84

  150

  80

  33

  注:1.表中数据S53C钢为生产记录每套刀具推算平均寿命数,49MnVS3钢为生产试验样本每套刀具平均寿命数。2.表中工序为曲轴加工中切削量大的工序,切削量小的工序没有列入表中。其中车-拉轴颈指加工瓶颈工序。

  非调质钢曲轴因49MnVS3钢锻件未经调质处理,室温组织为珠光体和铁素体,硬度均匀,工件表面硬度差<20HBS,断面硬度差<15HBS,且钢中含有较高的硫,从而显著改善切削性能。从表3可以看出,切削量大的工序,刀具使用寿命提高得大,特别是解决了车-拉轴颈工序(调质钢曲轴加工瓶颈工序)的切削加工问题,并使刀具使用寿命提高了150%以上。切削量小的工序刀具使用寿命提高达30%左右。

  曲轴磨削加工后,必须进行表面硬化处理,以提高轴颈的耐磨性能和疲劳强度,延长曲轴的使用寿命。柴油机曲轴采用气体氮碳共渗工艺进行表面硬化处理。非调质钢曲轴气体氮碳共渗结果怎样呢?为此我们进行了氮碳共渗工艺试验及耐磨性能试验。试验方法是用49MnVS3钢曲轴进行与S53C钢曲轴相同工艺处理,检测其氮碳共渗质量,试验结果表明非调质钢曲轴氮碳共渗后的质量与S53C钢曲轴相当,可满足曲轴各项技术要求。

  2.3 金相组织及分析

  非调质钢曲轴毛坯因坯料直径较大(φ115mm),加热温度高(1190℃),时间长,锻造比因部位不同,其室温金相组织也不同。曲轴表面变形大,冷速大,金相组织为较细的珠光体加断续网状铁素体,晶粒度为4~6级,硬度高达240~260HB;而心部组织因变形小,冷速小,金相组织为较粗的珠光体加断续网状铁素体,晶粒度为3~5级,硬度为230~245HB。非调质钢曲轴锻后金相组织、硬度、晶粒度可见表4所示。另外,从试验中还可得出,工件加热温度、终锻温度偏高,冷却速度较低时,晶粒粗大,切削性能好,但韧性差,疲劳强度低。

  2.4 力学性能

  力学性能检测主要做抗拉试验和冲击试验。根据曲轴服役条件,曲轴直径的大小。试样的尺寸均为标准试样。

  试验方法是每批次取2件曲轴,做4个抗拉试样,4个冲击试样,进行两种材质的对比试验,其试验结果见表4所示。

  表4 两种材质曲轴力学性能及金相组织对比数据表

  材质 σs/MPa σb/MPa 屈强比 δ(%) Ψ(%) αKu/-2 HBS 金相组织 晶粒度

  S53C钢

  49MnVS3钢 535~545

  491~497 790~810

  804~821 0.660

  0.608 17~19

  16~18 58~60

  33~36 65~75

  20~45 235~246

  236~245 S网+F少

  P+F断网 5~7级

  3~5级

  从表4中可以看出,两种钢的抗拉强度、屈服强度基本相同,但由于金相组织结构不同,调质钢韧性比较好,非调质钢晶粒粗大,铁素体呈断续网状,导致韧性较差。

  2.5 疲劳强度及耐磨性能

  曲轴疲劳性能的好坏,直接影响着曲轴装机后的使用寿命,所以进行曲轴疲劳试验是非常必要的。非调质钢曲轴表面硬化质量、抗拉强度与调质钢相当,但韧性较差,为此我们又进行了两种材质曲轴疲劳性能的对比试验。按JB3258《汽车发动机曲轴疲劳台架试验方法》的要求,用两种钢曲轴成品各随机抽取5件曲轴,在DC-1型电磁激振疲劳试验机上进行疲劳强度试验,采用升降法求疲劳极限,再根据疲劳强度计算出安全系数来判断曲轴是否符合技术要求。具体试验结果见表5所示。

  曲轴耐磨试验是用两种材质按试验要求做成试块,在MM-200型磨损试验机上进行等条件下耐磨试验,再比较磨损体积的大小。具体试验结果见表5所示。

  表5 曲轴弯曲疲劳强度、安全系数、耐磨性能对比数据表

  材质 疲劳强度/MPa 安全系数 磨损压力/N 磨损时间/h 摩擦副 磨损体积/mm3

  S53C钢

  49MnVS3钢 1035

  1035 1.56

  1.56 250

  250 19

  19 高速钢

  高速钢 6.114

  6.521

  从表5中可以看出49MnVS3钢曲轴疲劳强度、安全系数均与S53C钢相同,磨损量比S53C钢略微大一点。按JB3258《汽车发动机曲轴疲劳台架试验方法》要求,曲轴安全系数>1.3就可以满足曲轴性能要求,故49MnVS3钢曲轴达到S53C钢水平,能够满足我公司柴油机曲轴的性能要求。

  2.6 台架试验

  台架耐久试验是考核曲轴装机后使用性能及寿命的一种强化试验。我们用49MnVS3钢曲轴装机两台,进行600h耐久台架试验。首先磨合50h,再进行550h强度试验后,检查曲轴的变形量及轴颈磨损状态,再与S53C钢曲轴600h台架试验结果进行比较。通过两轮600h耐久台架试验后,检查非调质钢曲轴的变形量和轴颈磨损量,均与S53C钢台架试验结果相当,符合曲轴台架耐久试验的技术要求。

  2.7 装车路试

  49MnVS3钢曲轴在进行台架疲劳试验和台架耐久试验后,接着要进行装车路试,进一步检测其可靠性、可行性和替代性。我们的方法是用49MnVS3钢曲轴装配3台发动机装车进行三万公里路试,在各种不同的路况下,行驶不同路程,检测曲轴的变形、磨损及其他失效内容。试验结果证明49MnVS3钢曲轴达到S53C钢曲轴的技术水平,完全能满足柴油机对曲轴的技术要求。

  3 经济效益分析

  用49MnVS3钢替代S53C钢制造我公司柴油机曲轴,不但能满足其性能和各项技术要求,解决切削加工中生产实际问题,使我公司发动机生产逐步走上正常轨道,而且能较大幅度地降低柴油机曲轴的制造成本,产生显著的经济效益。

  49MnVS3钢柴油机曲轴的经济效益主要由两部分组成。一部分是材料国产化后(49MnVS3钢材由国内供应,S53C钢材需进口),降低了原材料采购价,取消了锻件调质处理工序,减少了废品率,简化工序,缩短了生产周期,降低了制造成本。另外,由于49MnVS3钢中硫含量较高,组织结构稳定,硬度均匀,表面硬度差较小,大大地改善了曲轴切削加工时的切削性能,提高了生产效率和刀具使用寿命,较大幅度地降低了加工制造成本。从表3中可以看出49MnVS3钢曲轴切削量大的工序,刀具使用寿命提高80%~150%,切量小的工序也提高了30%左右。49MnVS3钢曲轴投产后,我们用数理统计的方法分析了一段时间的生产记录,分析结果证明:每件49MnVS3钢曲轴的加工制造成本可节省48元左右,加上降低曲轴毛坯采购价95元/件,实际每件49MnVS3钢曲轴可节约制造成本143元左右。自投产以来我们已生产49MnVS3钢曲轴4万余件,经济效益达600余万元。

  4 结论

  (1) 49MnVS3钢曲轴经各类性能试验证明,能满足我公司柴油机曲轴技术要求,可替代调质钢制造曲轴。

  (2) 49MnVS3钢曲轴可省略调质处理工序,简化生产工序,降低废品率,产品质量稳定,适用于规模大、自动化程度高的曲轴生产线。

  (3) 采用49MnVS3钢制造柴油机曲轴,可产生显著的经济效益,每件曲轴可望降低制造成本143元左右。

  (4) 49MnVS3钢的塑性、韧性比S53C钢稍差,可用降低含碳量改进锻造工艺参数的方法,逐步达到调质钢的水平。

 
(文/admin)
打赏
免责声明
• 
部分文章来源于网络,我们均标明出处,如果您不希望我们展现您的文章,请与我们联系,我们会尽快处理。
0相关评论
 

(c)2023-2023 www.pec33.com All Rights Reserved

浙ICP备14008059号