卷积交织和解交织原理简介
在DVB-C系统当中,实际信道中的突发错误往往是由脉冲干扰、多径衰落引起的,在统计上是相关的,所以一旦出现不能纠正的错误时,这种错误将连续存在。因此在DVB-C系统里,采用了卷积交织来解决这种问题。它以一定规律扰乱源符号数据的时间顺序,使其相关性减弱,然后将其送入信道,解交织器按相反规律恢复出源符号数据。
DVB-C的卷积交织和解交织原理为:交织由I=12(I为交织深度)个分支构成。每个分支的延时逐渐递增,递增的单元数M=n/I=204/12=17(M为交织基数)。这里的数据单位为字节。0支路无延时,1支路延时17个符号周期,11支路则延时l7×11个符号周期。输入端有一开关随着时间推移依次连接各个延时支路,输出端有一开关与输入端一一对应,同步连接各延时支路。
解交织器的实现
解交织器的FPGA实现原理
本文采用RAM分区循环移位法来实现,因为RAM里面暂存一位数据,只需要用一个逻辑门大小的资源,比基本寄存器暂存一位数据需要12个逻辑门大小的资源要优化很多。用RAM分区循环移位法来实现解交织器,就是把RAM分成11个区。每个区的大小为(单位为字节):
Ni=M*(I-i-1)(i=0,1,2,…,(I-1))
这里i为RAM所分区的区号。
因为11支路不需要延时,所以RAM的11分区大小即N11为0。本文在RAM前面设置一个地址控制器,这是解交织器关键的一步。RAM每区有一个首地址和区内偏移地址,分别用一个寄存器来存储。在地址控制器里产生每区的首地址和区内偏移地址,从而进一步产生RAM的读写地址。
解交织器的FPGA实现
把解交织器的深度I和基数M设成参数,以增强程序的通用性。如果以后设计的解交织器的系数I和M需要改动,只要把参数值重新设置一下就可以了,不需要改动程序。由前面的计算可知,解交织器总共需要延时的比特数,也就是RAM的大小应该为8976比特。
可以用下面一段程序实现首地址的初始化:
FirstAddr[0]=0;
for(i=1;i<(I-1);i=i+1)
FirstAddr[i]=(I-i)*M+FirstAddr[i-1];
也就是说0~11支路的首地址在RAM中分别为0,187,357,510,646,765,867,952,1020,1071,1105。
RAM每区的字节数可以由参数来表示,即为(I-i-1)*M,i为分支号。
每区内偏移地址SectAddr[i]初始化为0,每写入一个数据,递增1并与由参数表示的每区的字节数进行比较,若两数相等,则SectAddr[i]重新设为零,保证区内偏移地址在每区内循环移动。